Fakultät für Mathematik und Informatik
Institut für Angewandte Mathematik, IWR und Bioquant

Ruprecht-Karls-Universität Heidelberg



Prof. Dr. Anna Marciniak-Czochra

Fellow-Klasse 2019-20



  • Mathematical modelling
  • Partial differential equations
  • Dynamical systems
  • Multiscale methods
  • Pattern formation and self-organisation
  • Model reduction
  • Population dynamics
  • Mathematical biology 



  • Seit 2016 Dircetor of the Institute of Applied Mathematics 
  • Seit 2011 Full (W3) Professor of Applied Mathematics, Heidelberg University
  • 2011 Visiting Professor at the Department of Mathematics, University Lyon 1
  • 2011 Dr. habil. (with honors), University of Wroclaw, Wroclaw, Poland 
  • 2008 - 2011 Independent Research Group Leader, Interdisciplinary Center for Scientific Computing (IWR) and BIOQUANT, Heidelberg University
  • 11-12/2008 Visiting Faculty Member at Mathematical Bioscience Institute, Columbus Ohio, USA
  • 2007 - 2008 Research Assistant (own project), Heidelberg Academy of Sciences and Humanities
  • 2004 - 2008 Postdoctoral fellow, Center for Modeling and Simulation in Biosciences, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg Univ.
  • 2004 Dr. rer. nat. in Mathematics, Heidelberg University, Germany
  • 1998 Master in Mathematics, University of Warsaw, Poland


Tipping points at the verge of decision-making process in biology and economics

Tipping points are implied in every process where small perturbations lead to dramatic changes. These processes range from climate changes, to changes in consumers choice, to epidemics or break down of financial markets. Yet, there is little to no common understanding of the shared overarching principles governing tipping points in these very different systems, as well as of their unique aspects. The proposed project aims at addressing tipping points at play in biology and economics by commonly describing them through mathematical modelling. Developed models of tipping points dynamics in these system shall facilitate the predictability, and thus, manipulation of the decision-making process. This interdisciplinary approach should advance our knowledge of tipping points in biology and economics but also in other areas of our lives.


Ausgewählte Publikationen:

  • Ziebell, F., Dehler, S., Martin-Villalba, A., and Marciniak-Czochra, A. (2017). Revealing age-related changes of adult hippocampal neurogenesis using mathematical models. Development, 145, doi:10.1242/dev.153544.
  • Gaillochet, C., Stiehl, T.,  Wenzl, C., Ripoll, J.J.,  Bailey-Steinitz, L.J., Pfeiffer, A., Miotk, A.,  Hakenjos, J., Forner, J.,  Yanofsky, M.F. Marciniak-Czochra, A. & Lohmann, J.U. (2017) Control of plant cell fate transitions by transcriptional and hormonal signals. Elife 6: e30135.
  • Gwiazda, P., Jamroz, G. & Marciniak-Czochra, A. (2012) Models of discrete and continuous cell differentiation in the framework of transport equation. SIAM J. Math. Anal. 44: 1103-1133.
  • Marciniak-Czochra, A., Härting, S., Karch G., & Suzuki, K. (2018) Dynamical spike solutions in a nonlocal model of pattern formation. Nonlinearity 31: 1757.

  • Marciniak-Czochra, A., Karch, G., & Suzuki, K. (2017). Instability of Turing patterns in reaction-diffusion-ODE systems. J. Math. Biol. 74: 583-618.
  • Gwiazda, P., Lorenz, T. & Marciniak-Czochra, A. (2010) A nonlinear structured population model: Lipschitz continuity of measure valued solutions with respect to model ingredients. J. Differential Equations 248: 2703- 2735.
  • Stiehl, T., Baran, N., Ho, A. D., & Marciniak-Czochra, A. (2015). Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Research. 75: 940-949.
  • Stiehl, T., Baran, N., Ho, A. D., & Marciniak-Czochra, A. (2014) Clonal selection and therapy resistance in acute leukemias: Mathematical modelling explains different prolife- ration patterns at diagnosis and relapse. J. Royal Society Interface. 11: 20140079.
  • Marciniak-Czochra, A., Stiehl, T.,  Ho, A. D., Jaeger, W. & Wagner, W. (2009) Modeling asymmetric cell division in hematopoietic stem cells regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 18: 377–385. 

  • Doumic, M., Marciniak-Czochra, A., Perthame, B.,  & Zubelli, J. (2011) Structured population model of stem cell differentiation. SIAM J. Appl. Math. 71: 1918–1940.
Seitenbearbeiter: Geschäftsstelle
Letzte Änderung: 24.04.2019
zum Seitenanfang/up